J.K. SHAH CLASSES

MATHEMATICS \& STATISTICS
SYJC TEST - 05-SET 1
DURATION - $1^{1} / 2$ HR MARKS - 40
TOPIC: SECTION-1 INTEGRATION (INDEFINITE \& DEFINITE), APP. OF DEFINITE INTEGRALS SECTION-II SEQUENCING, ASSIGNMENT, DEMOGRAPHY

SECTION - I

Q1. Attempt any THREE of the following (2 marks each)
01.
$\int \frac{1}{x(3+\log x)} d x$
$3+\log x=t$
$\frac{1}{x} \cdot d x=d t$

Now the sum is
$=\int \frac{1}{\mathrm{t}} \mathrm{dt}$
$=\quad \log |t|+c$

RESUBS.
$=\quad \log |3+\log x|+c$
02.
$\int \frac{1}{x^{2}+8 x+20} d x$

SOLUTION

$$
\left(\frac{1}{2}(8)\right)^{2}=16
$$

$$
=\int \frac{1}{x^{2}+8 x+16+20-16} d x
$$

$$
=\int \frac{1}{(x+4)^{2}+4} d x
$$

$$
=\int \frac{1}{(x+4)^{2}+2^{2}} d x
$$

$$
=\frac{1}{2} \tan ^{-1} \frac{x+4}{2}+c
$$

3. $\int \frac{1}{x\left[(\log x)^{2}+4\right]} d x$

SOLUTION

$$
\text { PUT } \begin{aligned}
\log \mathrm{x} & =\mathrm{t} \\
\frac{1}{\mathrm{x}} \cdot \mathrm{dx} & =\mathrm{dt}
\end{aligned}
$$

the sum is
$=\int \frac{1}{t^{2}+4} d t$
$=\int \frac{1}{t^{2}+2^{2}} d t$
$=\frac{1}{a} \tan ^{-1} \frac{t}{a}+c$
$=\frac{1}{2} \tan ^{-1} \frac{\mathrm{t}}{2}+\mathrm{c}$
Resubs.
$=\frac{1}{2} \tan ^{-1}\left(\frac{\log x}{2}\right)+c$
04. Find the area of the region bounded by the curve $y^{2}=4 x$ and the lines $x=1$; $x=4$ and the x - axis

SOLUTION

$$
\begin{aligned}
A & =\int_{1}^{4} y d x \\
& =\int_{1}^{4} \sqrt{4 x} d x \\
& =\int_{1}^{4} 2 \sqrt{x} d x
\end{aligned}
$$

$$
\begin{aligned}
& =2 \int_{1}^{4} x^{1 / 2} d x \\
& =2\left(\frac{x^{3 / 2}}{\frac{3}{2}}\right)_{1}^{4} \\
& =\frac{4}{3}\left(x^{3 / 2}\right)_{1}^{4} \\
& =\frac{4}{3}\left(4^{3 / 2}-1^{3 / 2}\right) \\
& =\frac{4}{3}\left(2^{2.3 / 2}-1\right) \\
& =\frac{4}{3}\left(2^{3}-1\right) \\
& =\frac{4}{3}(8-1) \\
& =\frac{28}{3} \text { sq. units }
\end{aligned}
$$

1. $\int e^{x} \frac{x+3}{(x+4)^{2}} d x$

SOLUTION

$$
\begin{aligned}
& \int e^{x}\left(\frac{x+3}{(x+4)^{2}}\right) d x \\
&= \int^{e^{x}}\left(\frac{x+4-1}{(x+4)^{2}}\right) d x \\
&= \int^{e^{x}}\left(\frac{x+4}{(x+4)^{2}} \frac{-1}{(x+4)^{2}}\right) d x \\
&= \frac{d}{e^{x}}\left(\frac{1}{x+4} \frac{-1}{(x+4)^{2}}\right) d x \\
&= e^{x+4} \frac{-1}{(x+4)^{2}} \\
&= \int e^{x}(x)+f^{\prime}(x) d x \\
&=\left.e^{x}(x)+c\right) \\
& x+4
\end{aligned}
$$

2. $\int \tan ^{-1} x d x$

SOLUTION

$$
\begin{aligned}
& =\tan ^{-1} x \int 1 d x-\int\left(\frac{d}{d x} \tan ^{-1} x \int 1 d x\right) d x \\
& =\quad \tan ^{-1} x \cdot x-\int \frac{1}{1+x^{2}} \cdot x d x \\
& =\quad x \cdot \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x \\
& =\quad x \cdot \tan ^{-1} x-\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x \\
& =x \cdot \tan ^{-1} x-\frac{1}{2} \log \left|1+x^{2}\right|+c
\end{aligned}
$$

3.

$$
\cos \mathrm{x} \cdot \mathrm{dx}=\mathrm{dt}
$$

THE SUM IS

$$
\begin{aligned}
& \int \frac{1}{\sqrt{9-8 t-t^{2}}} d t \\
= & \int \frac{1}{\sqrt{9-\left(t^{2}+8 t\right)}} d t \\
= & \int \frac{1}{\sqrt{9-\left(t^{2}+8 t+16\right)+16}} d t \\
= & \int \frac{1}{\sqrt{5^{2}-(t+4)^{2}}} d t \\
= & \sin ^{-1} \frac{t}{a}+c \\
= & \sin ^{-1}\left(\frac{t+4}{5}\right) \\
= & \sin ^{-1}\left(\frac{\sin x+4}{5}\right)+\mathrm{c} \\
= &
\end{aligned}
$$

1.

$$
\int \frac{1+\log x}{x(2+\log x)(3+\log x)} d x
$$

SOLUTION

$$
\begin{aligned}
& \log x=t \\
& \therefore \frac{1}{\mathrm{x}} \cdot \mathrm{dx}=\mathrm{dt} \\
& =\int \frac{1+t}{(2+t)(3+t)} d t \\
& \begin{aligned}
\frac{1+t}{(2+t)(3+t)} & =\frac{A}{2+t}+\frac{B}{3+t} \\
1+t & =A(3+t)+B(2+t)
\end{aligned} \\
& \text { Put } \quad t=-3 \\
& 1-3=B(2-3) \\
& -2=B(-1) \quad \therefore B=2
\end{aligned}
$$

Put $\quad \mathbf{t}=\mathbf{-} \mathbf{2}$

$$
\begin{array}{rlr}
1-2 & =A(3-2) \\
-1 & =A(1) & \therefore A=-1
\end{array}
$$

HENCE

$$
\frac{1+t}{(2+t)(3+t)}=\frac{-1}{2+t}+\frac{2}{3+t}
$$

BACK IN THE SUM
$=\int \frac{-1}{2+t}+\frac{2}{3+t} d t$

$$
=\quad-\log |2+t|+2 \log |3+t|+c
$$

RESUBS. $=-\log |2+\log x|+2 \log |3+\log x|+c$
02. 9

$$
\int \frac{\sqrt[3]{12-x}}{\sqrt[3]{x}+\sqrt[3]{12-x}} d x
$$

$$
3
$$

SOLUTION

$$
\begin{aligned}
& I=\int_{3}^{9} \frac{\sqrt[3]{12-x}}{\sqrt[3]{x}+\sqrt[3]{12-x}} d x \ldots \ldots .(1) \\
& \text { USING } \int_{a}^{b} f(x) d x=\int_{b}^{b} f(a+b-x) d x
\end{aligned}
$$

$$
I=\int_{3}^{9} \frac{\sqrt[3]{12-(12-x)}}{\sqrt[3]{12-x}+\sqrt[3]{12-(12-x)}} d x
$$

$$
I=\int_{3}^{9} \frac{\sqrt[3]{12-12+x}}{\sqrt[3]{12-x}+\sqrt[3]{12-12+x}} d x
$$

$$
I=\int_{3}^{9} \frac{\sqrt[3]{x}}{\sqrt[3]{12-x}+\sqrt[3]{x}} d x \ldots \ldots .(2)
$$

$$
(1)+(2)
$$

$$
I=\int_{3}^{9} \frac{\sqrt[3]{12-x}+\sqrt[3]{x}}{\sqrt[3]{12-x}+\sqrt[3]{x}} d x
$$

$$
2 \mathrm{I}=\int_{3}^{9} 1 \mathrm{dx}
$$

$$
2 I=(x)_{3}^{9}
$$

$$
2 \mathrm{I}=9-3
$$

$$
2 I=6
$$

$$
I=3
$$

3. Find the volume of a solid obtained by the complete revolution of the ellipse

$$
\frac{x^{2}}{36}+\frac{y^{2}}{25}=1
$$

$$
\text { about } x \text { - axis }
$$

SOLUTION

STEP 1 :
$\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

6
$a^{2}=36 ; a=6$
$b^{2}=25, b=5$

STEP 2 :
$\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$

$$
=\frac{25 \pi}{36}\left(36 x-\frac{x^{3}}{3}\right)
$$

$$
\frac{y^{2}}{25}=1-\underline{x^{2}}
$$

6

$$
3=\frac{25 \pi}{36}\left\{\left(216-\frac{216}{3}\right)-\left(-216+\frac{216}{3}\right)\right\}
$$

$$
\frac{y^{2}}{25}=36-x^{2}
$$

$$
36
$$

$$
=\frac{25 \pi}{36}\{(216-72)-(-216+72)\}
$$

STEP 3 :

$$
y^{2}=\frac{25}{36}\left(36-x^{2}\right)
$$

$$
=\frac{25 \pi}{36}\{(144)-(-144)\}
$$

$$
\begin{aligned}
V & =\pi \int_{-6}^{6} y^{2} \cdot d x \\
& =\pi \int_{-6}^{6} \frac{25}{36}\left(36-x^{2}\right) \cdot d x \\
& =\frac{25 \pi}{36} \int\left(36-x^{2}\right) \cdot d x
\end{aligned}
$$

1. Compute Age - Specific Death rate for the following data

AGE GROUP	NO. OF PERSONS	NO. OF DEATHS	SDR $=\frac{\mathbf{D}}{\mathbf{P}} \times \mathbf{1 0 0 0}$
$0-20$	7000	140	$\frac{140}{7000} \times 1000=20$
$20-25$	20000	180	$\frac{180}{20000} \times 1000=9$
$65 \&$ above	10000	120	$\frac{120}{10000} \times 1000=12$
200	160	$\frac{160}{4000} \times 1000=40$	

2. For the following problem, find the sequence that minimizes total elapsed time required to complete the following jobs on two machines $M_{1} \& M_{2}$ in the order $M_{1}-M_{2}$

Jobs	A	B	C	D	E
Machine M_{1}	5	1	9	3	10
Machine M_{2}	2	6	7	8	4

Min time $\quad=1$ on job B on machine M_{1}. Place the job at the start of the sequence

B				

Next min time $=2$ on job A on machine M_{2}. Place the job at the end of the sequence

B				A

Next min time $=3$ on job D on machine M_{1}. Place it at the start of the sequence after B

B	D			A

Next min time $=4$ on job E on machine M_{2}. Place it at the end of the sequence before A

\mathbf{B}	\mathbf{D}		\mathbf{E}	\mathbf{A}

OPTIMAL SEQUENCE

B	D	C	E	A

-9 -
03. in a complete life table $l_{4}=60$ and $\mathrm{L}_{4}=45$. Find the value of p_{4}

STEP 1 :	STEP 2 :
Lx = $1 \mathrm{x}+1 \mathrm{l}+1$	$\mathrm{px}=\mathrm{l} \times \mathrm{x}+1$
2	Ix
$\mathrm{L}_{4}=14+15$	$\mathrm{p} 4=15$
-	14
$45=60+15$	$=30$
2	60
$90=60+15$	$\mathrm{p} 4=0.5$
$15=30$	

4. SOLUTION

Age Group	Population	No. of deaths	CDR	Σ D $\times 1000$
0-20	40000	350		$\Sigma \mathrm{P}$
20-65	65000	650	13.4	$1000+x$
65 \& above	15000	X		120000
	$\Sigma P=120000$	$\Sigma \mathrm{D}=1000+\mathrm{x}$	1608	$1000+x$

1. Complete the following life table

x	I_{x}	dx_{x}	qx_{x}	px	Lx^{\prime}
4	9100	60	$?$	$?$	$?$
5	$?$	45	$?$	$?$	

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{x}}=\frac{\mathbf{d}_{\mathbf{x}}}{l_{\mathbf{x}}} \\
& \begin{aligned}
\mathrm{q}_{4} & =\frac{\mathrm{d}_{4}}{l_{4}}
\end{aligned}=\frac{60}{9100} \\
& \\
& =0.0066
\end{aligned}
$$

$$
\begin{aligned}
& \text { LOG CALC } \\
& 1.7782 \\
& -3.9590 \\
& \hline \text { AL } \overline{3} .8192 \\
& 0.006595 \\
& \hline
\end{aligned}
$$

$$
\begin{array}{rl|l}
\mathrm{q}_{5}=\frac{\mathrm{d}_{5}}{l_{5}} & =\frac{45}{9040} & \text { LOG CALC } \\
1.6532 \\
& =0.0050 & \frac{-3.9562}{\mathrm{AL} \overline{3} .6970} \\
0.004977
\end{array}
$$

$$
\mathbf{p}_{\mathrm{x}}=\mathbf{1}-\mathbf{q}_{\mathrm{x}}
$$

\[

\]

$$
\mathrm{L}_{\mathrm{x}}=\frac{l \mathrm{x}+l \mathrm{x}+\mathbf{1}}{2}
$$

$$
\checkmark L_{4}=\frac{l_{4}+l_{5}}{2}=\frac{9100+9040}{2}
$$

$$
=9070
$$

$$
\mathrm{L}_{5}=\frac{l_{5}+l_{6}}{2}=\frac{9040+8995}{2}
$$

$$
=\frac{18035}{2}
$$

$$
=9017.5
$$

> SOLUTION
> $d \mathrm{x}=l \mathrm{x}-l \mathrm{x}+1$
02. Calculate CDR for district A and B and compare

SOLUTION

Age Group (Years)	DISTRICT A		DISTRICT B	
	NO. OF PERSONS IN 'OOO P	NO. OF DEATHS D	NO. OF PERSONS IN `000 P	NO. OF DEATHS D
0-15	1	20	2	50
15-55	3	30	7	70
Above 55	2	40	1	25
	$\Sigma P=6$	$\Sigma \mathrm{D}=90$	$\Sigma P=10$	$\Sigma \mathrm{D}=145$
	CDR(A)	$=\frac{\Sigma \mathrm{D}}{\Sigma \mathrm{P}}$	CDR(B)	$=\frac{\Sigma \mathrm{D}}{\Sigma \mathrm{P}}$
	$=\frac{90}{6}$			$=\frac{145}{10}$
	$=15$			$=14.5$
	(deaths per thousand)			ths per th

COMMENT: $\quad \operatorname{CDR}(B)<C D R(A)$. HENCE DISTRICT B IS HEALTHIER THAN DISTRICT A
03. the departmental store has four workers to pack their items. The timings in minutes required for each worker to complete the packings per item sold is given below. How should the manager of the store assign the jobs to the workers, so as to minimize the total time of packing

		Items			
Workers	Books	Toys	Crockery	cutlery	
	A	2	10	9	7
	B	13	2	12	2
	C	3	4	6	1
	D	4	15	4	9

0	8	7	5
11	0	10	0
2	3	5	0
0	11	0	5

Reducing the matrix using row minimums

Optimal Assignment
A - Books ; B - Toys ; C - Cutlery ; D - Crockery
Minimum time $=2+2+4+1=9$ minutes
01.

AGE x	$l \mathbf{x}$	$\mathbf{d x}=l \mathrm{x}-l \mathrm{x}+1$	$\mathrm{qx}=\frac{\mathrm{dx}}{l \mathbf{x}}$	$p \mathrm{p}=1-\mathrm{qx}$	$L x=\frac{l x+l x+1}{2}$	Tx	$\mathbf{e}_{\mathbf{x}}^{0}=\frac{\mathrm{Tx}_{x}}{l \mathbf{x}}$
0	1000	$1000-850=150$	$\frac{150}{1000}=0.15$	$1-0.15=0.85$	$850+75=925$	2495	$\frac{2495}{1000}=2.495$
1	850	$850-760=90$	$\frac{90}{850}=0.1059$	$1-0.1059=0.8941$	$760+45=805$	1570	$\frac{1570}{850}=1.847$
2	760	$760-360=400$	$\frac{400}{760}=0.5264$	$1-0.5264=0.4736$	$360+200=560$	765	$\frac{765}{760}=1.007$
3	360	$360-25=335$	$\frac{335}{360}=0.9305$	$1-0.9305=0.0695$	$25+167.5=192.5$	205	$\frac{205}{360}=0.5696$
4	25	$25-0=25$	$\frac{25}{25}=1$	$1-1=0$	$0+12.5=12.5$	12.5	$\frac{12.5}{25}=0.5$
5	0	----	----	----	----	----	--

LOG CALCULATIONS FOR 'qX'

LOG 90 - LOG 850	LOG $400-$ LOG 760	LOG $335-$ LOG 360
1.9542	2.6021	2.5250
-2.9294		
AL $\overline{1.0248}$	$\frac{-}{4.8808}$	
0.1059	0.5264	$\frac{-2.5563}{\text { AL } \overline{1.9213}}$

OG CALCULATIONS FOR 'ex ${ }^{0}$

LOG 1570 - LOG 850 LOG 765 - LOG 760 LOG 205 - LOG 360

3.1959	2.8837	2.3118
2.9294	- 2.8808	- 2.5563
AL 0.2665	AL 0.0029	AL 1.7555
1.847	1.007	0.5696

2. Find the sequence that minimizes total elapsed time (in hours) required to complete the following jobs on two machines M_{1} and M_{2} in the order $M_{1} M_{2}$. Also find the minimum elapsed time and idle time for two machines

Job	A	B	C	D	E	F
M_{1}	5	9	4	7	8	6
M_{2}	7	4	8	3	9	5

Step 1 : Finding the optimal sequence

Min time $=3$ on job D on machine M_{2}. Place the job at the end of the sequence

Next min time $=4$ on job B on machine $M_{2} \&$ on job C on machine M_{1}. Place the job B at the end of the sequence before $D \& j o b C$ at the start of the sequence sequence

C				B	D

Next min time $=4$ on job A on machine $M_{1} \&$ on job F on machine M_{2}. Place the job A at the start of the sequence after C \& job F at the end of the sequence before B

C	A		F	B	D

OPTIMAL SEQUENCE

C	A	E	F	B	D

Step 2 : Work table

According to the optimal sequence

| Job | C | A | E | F | B | D | total process time |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M_{1} | 4 | 5 | 8 | 6 | 9 | 7 | $=39 \mathrm{hrs}$ |
| M_{2} | 8 | 7 | 9 | 5 | 4 | 3 | $=36 \mathrm{hrs}$ |

WORK TABLE

	MACHINES				
	M1		M ${ }_{2}$		Idle time on M_{2}
JOBS	IN	OUT	IN	OUT	
C	0	4	4	12	4
A	4	9	12	19	
E	9	17	19	28	
F	17	23	28	33	
B	23	32	33	37	
D	32	39	39	42	

Step 3 :

Total elapsed time $\quad \mathbf{T}=42 \mathrm{hrs}$
Idle time on $\mathbf{M}_{\mathbf{1}}=\mathbf{T}-($ sum of processing time of all jobs on M1 $)$
$=42-39$
$=3 \mathrm{hrs}$
$\begin{aligned} \text { Idle time on } \mathbf{M}_{\mathbf{2}} & =\mathrm{T}-(\text { sum of processing time of all jobs on M2 }) \\ & =42-36 \\ & =6 \mathrm{hrs} \quad(\mathbf{C H E C K}: 4+2=6)\end{aligned}$
03. a pharmaceutical company has four branches, one each at city A, B , C \& D. A branch manager is to be appointed one at each city, out of four candidates P, Q, R and S. The monthly business depending upon the city and the effectiveness of the branch manager in that city is given below

Branch Manager	Monthly Business (in lacs)			
	B	C	D	
Q	10	10	8	8
R	12	15	10	9
S	11	16	12	7
	15	13	15	11

6	6	8	8
4	1	6	7
5	0	4	9
1	3	1	5

substracting all the elements in the matrix from the largest value '16'
the matrx can now be solved for 'MINIMAL ASSIGNMNET PROB'

0	0	2	2
3	0	5	6
5	0	4	9
0	2	0	4

0	0	2	0
3	0	5	4
5	0	4	7
0	2	0	2

reducing the matrix using 'ROW MINIMUM'
reducing the matrix using 'COLUMN MINIMUM'

Allocation using 'SINGLE ZERO ROW COLUMN METHOD'
Allocation Incomplete
Drawing minimum no. of lines to cover all zero's

Revise the matrix -
Reduce all the UNCOVERED elements by its minimum ' 3 ' and ADD the same at the INTERSECTION

$\not X$	3	2	0
0	X	2	1
2	0	1	4
\mathscr{X}	5	0	2

Reallocation using 'SINGLE ZERO ROW COLUMN METHOD' Since all rows now contain an assigned zero, the assignment problem is COMPLETE

OPTIMAL ASSIGNMENT
$P-D, Q-A, R-B, S-C$, maximum business $=51$ lacs

