J.K. SHAH CLASSES

MATHEMATICS & STATISTICS

SYJC TEST - 05 - SET 1 DURATION - 1 1/2 HR

MARKS - 40

SECTION-II SEQUENCING, ASSIGNMENT, DEMOGRAPHY

03.
$$\int \frac{1}{x \left[(\log x)^2 + 4 \right]} dx$$

SOLUTION

PUT $\log x = t$

$$\frac{1}{x} \cdot dx = dt$$

Q1

THE SUM IS

$$= \int \frac{1}{t^2 + 4} dt$$

$$= \int \frac{1}{t^2 + 2^2} dt$$

$$= \frac{1}{a} \tan^{-1} \frac{t}{a} + c$$

$$= \frac{1}{2} \tan^{-1} \frac{t}{2} + c$$

Resubs.

$$= \frac{1}{2} \tan^{-1} \left(\frac{\log x}{2} \right) + c$$

04. Find the area of the region bounded by the curve $y^2 = 4x$ and the lines x = 1; x = 4 and the x - axis

$$A = \int_{1}^{4} y \, dx$$
$$= \int_{1}^{4} \sqrt{4x} \, dx$$
$$= \int_{1}^{4} 2\sqrt{x} \, dx$$

$$= 2 \int_{1}^{4} x^{1/2} dx$$

$$= 2 \left(\frac{x^{3/2}}{\frac{3}{2}} \right)_{1}^{4}$$

$$= \frac{4}{3} \left(x^{3/2} \right)_{1}^{4}$$

$$= \frac{4}{3} \left(4^{3/2} - 1^{3/2} \right)$$

$$= \frac{4}{3} \left(2^{2 \cdot 3/2} - 1 \right)$$

$$= \frac{4}{3} \left(2^{3} - 1 \right)$$

$$= \frac{4}{3} \left(8 - 1 \right)$$

$$= \frac{28}{3} \text{ sq. units}$$

- 3 -

Q1

Q2. Attempt any TWO of the following (3 marks each)

01. $\int e^x \frac{x+3}{(x+4)^2} dx$

SOLUTION

$$\int e^{x} \left(\frac{x+3}{(x+4)^{2}} \right) dx$$

$$= \int e^{x} \left(\frac{x+4-1}{(x+4)^{2}} \right) dx$$

$$= \int e^{x} \left(\frac{x+4}{(x+4)^{2}} - \frac{1}{(x+4)^{2}} \right) dx$$

$$= \int e^{x} \left(\frac{1}{x+4} + \frac{-1}{(x+4)^{2}} \right) dx$$

$$\frac{d}{dx} \frac{1}{x+4} = \frac{-1}{(x+4)^{2}}$$

$$= e^{x} f(x) + f'(x) dx$$

$$= \int e^{x} \left(f(x) + c \right)$$

$$= \frac{e^{x}}{x+4} + c$$

02. $\int \tan^{-1} x \, dx$

SOLUTION

$$= \tan^{-1}x \int 1 \, dx - \int \left(\frac{d}{dx} \tan^{-1}x \int 1 \, dx\right) dx$$

$$= \tan^{-1}x \cdot x - \int \frac{1}{1+x^2} \cdot x \, dx$$

$$= x \cdot \tan^{-1}x - \int \frac{x}{1+x^2} \, dx$$

$$= x \cdot \tan^{-1}x - \frac{1}{2} \int \frac{2x}{1+x^2} \, dx$$

$$= x \cdot \tan^{-1}x - \frac{1}{2} \log|1+x^2| + c$$

(6 marks)

03.
$$\int \frac{\cos x}{\sqrt{9 - 8\sin x - \sin^2 x}} dx$$

SOLUTION PUT sin x = t

 $\cos x \cdot dx = dt$

dt

THE SUM IS
$$\int \frac{1}{\sqrt{9 - 8t - t^2}}$$

$$= \int \frac{1}{\sqrt{9 - (t^2 + 8t)}} dt$$

$$= \int \frac{1}{\sqrt{9 - (t^2 + 8t + 16) + 16}} dt$$

$$= \int \frac{1}{\sqrt{25 - (t + 4)^2}} dt$$
$$= \int \frac{1}{\sqrt{5^2 - (t + 4)^2}} dt$$

$$=$$
 sin⁻¹ t + c

,

$$\overline{a}$$

$$=$$
 $\sin^{-1}\left(\frac{t+4}{5}\right)$ + c

$$= \sin^{-1}\left(\frac{\sin x + 4}{5}\right) + c$$

01. $\int \frac{1 + \log x}{x(2 + \log x) (3 + \log x)} dx$

SOLUTION

$$\log x = t \qquad \therefore \frac{1}{x} \cdot dx = dt$$

$$= \int \frac{1+t}{(2+t)(3+t)} dt$$

$$\frac{1+t}{(2+t)(3+t)} = \frac{A}{2+t} + \frac{B}{3+t}$$

$$1+t = A(3+t) + B(2+t)$$
Put $t = -3$

$$1-3 = B(2-3)$$

$$-2 = B(-1) \qquad \therefore B = 2$$
Put $t = -2$

$$1-2 = A(3-2)$$

$$-1 = A(1) \qquad \therefore A = -1$$

HENCE

 $\frac{1+t}{(2+t)(3+t)} = \frac{-1}{2+t} + \frac{2}{3+t}$

BACK IN THE SUM

 $= \int \frac{-1}{2+t} + \frac{2}{3+t} dt$

$$= -\log|2 + t| + 2\log|3 + t| + c$$

RESUBS. = $-\log|2 + \log x| + 2\log|3 + \log x| + c$

02. 9

$$\int_{3} \frac{\sqrt[3]{12 - x}}{\sqrt[3]{x} + \sqrt[3]{12 - x}} dx$$
3
SOLUTION

$$I = \int_{3}^{9} \frac{\sqrt[3]{12 - x}}{\sqrt[3]{x} + \sqrt[3]{12 - x}} dx \dots (1)$$

$$using \int_{a}^{b} f(x)dx = \int_{b}^{b} f(a + b - x) dx$$

$$I = \int_{3}^{9} \frac{\sqrt[3]{12 - (12 - x)}}{\sqrt[3]{12 - x} + \sqrt[3]{12 - (12 - x)}} dx$$

$$I = \int_{3}^{9} \frac{\sqrt[3]{12 - (12 - x)}}{\sqrt[3]{12 - x} + \sqrt[3]{12 - (12 - x)}} dx$$

Q3

I =
$$\int_{3}^{9} \frac{\sqrt[3]{x}}{\sqrt[3]{12 - x} + \sqrt[3]{x}} dx$$
(2)

$$I = \int_{3}^{9} \frac{\sqrt[3]{12 - x} + \sqrt[3]{x}}{\sqrt[3]{12 - x} + \sqrt[3]{x}} dx$$

$$2I = \int_{3}^{9} 1 dx$$

$$2I = \left(x\right)_{3}^{9}$$

2I = 9-3

I = 3

03. Find the volume of a solid obtained by the complete revolution of the ellipse

$$\frac{x^2}{36} + \frac{y^2}{25} = 1$$

about x - axis
-6

3

SOLUTION

$$a^2 = 36$$
; $a = 6$
 $b^2 = 25$, $b = 5$

STEP 2 :

- $\frac{x^2}{36} + \frac{y^2}{25} = 1$
 - $\frac{y^2}{25} = 1 \frac{x^2}{6}$

$$\frac{y^2}{25} = \frac{36 - x^2}{36}$$

$$y^2 = \frac{25}{36}(36 - x^2)$$

STEP 3 :

$$V = \pi \int_{-6}^{6} y^2 dx$$

$$= \pi \int \frac{25}{36} (36 - x^2) dx$$

-6
$$= \frac{25\pi}{36} \int (36 - x^2) dx$$

$$= \frac{25\pi}{36} \left(\frac{36x - x^3}{3} \right)_{-6}^{-6}$$

$$= \frac{25\pi}{36} \left\{ \left(216 - \frac{216}{3} \right) - \left(-216 + \frac{216}{3} \right) \right\}$$

$$= \frac{25\pi}{36} \left\{ \left(216 - 72 \right) - \left(-216 + 72 \right) \right\}$$

$$= \frac{25\pi}{36} \left\{ \left(144 \right) - \left(-144 \right) \right\}$$

$$= \frac{25\pi}{36} \left\{ 288 \right\}$$

$$= 200 \pi \text{ cubic units}$$

Q4. Attempt any THREE of the following (2 marks each)

(6 marks)

01.	Compute Age – Specific Dea	th rate for the following data
01.	Compute Age – Specific Dea	the following uata

AGE GROUP	NO. OF	NO. OF DEATHS	$SDR = \underline{D} \times 1000$
	PERSONS		Р
0 - 20	7000	140	$\frac{140}{7000}$ x 1000 = 20
20 – 25	20000	180	$\frac{180}{20000} \times 1000 = 9$
25 - 65	10000	120	$\frac{120}{10000} \times 1000 = 12$
65 & above	4000	160	$\frac{160}{4000}$ x 1000 = 40

02. For the following problem , **find the sequence** that minimizes total elapsed time required to complete the following jobs on two machines $M_1 \& M_2$ in the order $M_1 - M_2$

Jobs	А	В	С	D	Е
Machine M_1	5	1	9	3	10
Machine M_2	2	6	7	8	4

Min time = 1 on job B on machine M_1 . Place the job at the start of the sequence

Next min time = 2 on job A on machine M_2 . Place the job at the end of the sequence

Next min time = 3 on job D on machine M_1 . Place it at the start of the sequence after B

Next min time = 4 on job E on machine M_2 . Place it at the end of the sequence before A

OPTIMAL SEQUENCE

03. in a complete life table $l_4 = 60$ and $L_4 = 45$. Find the value of p_4

STEP 1 :	STEP 2 :
$Lx = \frac{1x + 1x + 1}{2}$	$px = \frac{lx+1}{lx}$
$L_4 = \frac{14 + 15}{2}$	$p_4 = \frac{15}{14}$
$45 = \frac{60 + 15}{2}$	$= \frac{30}{60}$
90 = 60 + 15	p4 = 0.5
15 = 30	

04. SOLUTION

Age Group	Population	No. of deaths	CDR	=	ΣD x 1000
0 - 20	40000	350			ΣΡ
20 - 65	65000	650	13.4	=	<u>1000 + x</u> x 1000
65 & above	55 & above 15000				120 000
	$\Sigma P = 120000$	$\Sigma D = 1000 + x$	1608	=	1000 + x
		1	х	=	608

Q5. Attempt any TWO of the following (3 marks each)

01. Complete the following life table

x	١ _x	d _x	qх	рx	L _X
4	9100	60	?	?	?
5	?	45	?	?	

SOLUTION

$d\mathbf{x} = l\mathbf{x} - l\mathbf{x} + \mathbf{1}$

d4	= l4 - l5	d4	=	l4 - l5
60	= 9100 - <i>l</i> 5	45	=	9040 – <i>l</i> 6
l ₅	= 9100 - 60	l6	=	9040 – 45
l ₅	= 9040	l6	=	8995

$q_x = d_x$	
$ \frac{l_{\mathbf{x}}}{q_4 = d_4} = \frac{60}{9100} = 0.0066 $	LOG CALC 1.7782 - 3.9590 AL 3.8192 0.006595

		LOG CALC
q5 = d5	= 45	× 1.6532
$q_{3} = \frac{q_{3}}{2}$		- 3.9562
<i>l</i> 5	9040	
	0 0050	AL 3.6970
	= 0.0050	0.004977

$\mathbf{p_X} = 1 - \mathbf{q_X}$	
✓	p4 = 1 - q4 = 1 - 0.0066
	= 0.9934
✓ p5 = 1 - q5	= 1 - 0.0050
	= 0.9950
$L_{x} = \frac{/x + /x + 1}{2}$	
$\checkmark L_4 = \frac{l_4 + l_5}{2}$	$=\frac{9100+9040}{2}$
2	= 9070
$\checkmark L_5 = \frac{l_5 + l_6}{2}$	$= \frac{9040 + 8995}{2}$
	$= \frac{18035}{2}$
	= 9017.5

(6 marks)

02. Calculate CDR for district A and B and compare

SOLUTION

Age	DISTRICT A		DIST	RICT B
Group	NO. OF	NO. OF	NO. OF	NO. OF
(Years)	PERSONS IN '000	DEATHS	PERSONS IN `000	DEATHS
	Р	D	Р	D
0 - 15	1	20	2	50
15 - 55	3	30	7	70
Above 55	2	2 40 1		25
	$\Sigma \mathbf{P} = 6 \qquad \Sigma \mathbf{D} = 90$		$\Sigma \mathbf{P} = 10$	ΣD = 145
	CDR(A)	$= \frac{\Sigma D}{\Sigma P}$	CDR(B)	$= \frac{\Sigma D}{\Sigma P}$
		= 90 6		$= \frac{145}{10}$
	(DFATH	= 15 s per thousand) (DF.	= 14.5 ATHS PER THOUSA

COMMENT : CDR(B) < CDR(A) . HENCE DISTRICT B IS HEALTHIER THAN DISTRICT A

03. the departmental store has four workers to pack their items . The timings in minutes required for each worker to complete the packings per item sold is given below . How should the manager of the store assign the jobs to the workers , so as to minimize the total time of packing

			Items				
			Books	Toys	Crockery	cutlery	
		А	2	10	9	7	
Worke	ers	В	13	2	12	2	
		С	3	4	6	1	
		D	4	15	4	9	
0	8	7	5	Reducing	the matrix us	sing row mini	mums
11	0	10	0				

Optimal Assignment

A - Books ; B - Toys ; C - Cutlery ; D - Crockery

Minimum time = 2 + 2 + 4 + 1 = 9 minutes

Q6. Attempt any TWO of the following (4 marks each)

01.

AGE X	lx	$d\mathbf{x} = l\mathbf{x} - l\mathbf{x} + 1$	$\mathbf{qx} = \frac{\mathbf{dx}}{l\mathbf{x}}$	px = 1 - qx	$Lx = \frac{lx + lx + 1}{2}$	Тх	$e_x^0 = \frac{Tx}{/x}$
0	1000	1000 - 850= 150	$\frac{150}{1000} = 0.15$	1 - 0.15 = 0.85	850 + 75 = 925	2495	$\frac{2495}{1000} = 2.495$
1	850	850 - 760 = 90	$\frac{90}{850} = 0.1059$	1 - 0.1059 = 0.8941	760 + 45 = 805	1570	$\frac{1570}{850} = 1.847$
2	760	760 - 360 = 400	$\frac{400}{760} = 0.5264$	1 - 0.5264 = 0.4736	360 + 200= 560	765	<u>765</u> = 1.007 760
3	360	360 - 25 = 335	$\frac{335}{360} = 0.9305$	1 - 0.9305 = 0.0695	25+ 167.5= 192.5	205	$\frac{205}{360} = 0.5696$
4	25	25 - 0 = 25	$\frac{25}{25} = 1$	1 - 1 = 0	0 + 12.5 = 12.5	12.5	$\frac{12.5}{25} = 0.5$
5	0						

Q6

(8 marks)

LOG CALCULATIONS F	FOR 'qx'		LOG CALCULATIONS FOR 'ex ⁰ '				
LOG 90 - LOG 850	LOG 400 - LOG 760	LOG 335 – LOG 360	LOG 1570 – LOG 850	LOG 765 – LOG 760	LOG 205 – LOG 360		
1.9542	2.6021	2.5250	3.1959	2.8837	2.3118		
- 2.9294	- 2.8808	- 2.5563	- 2.9294	- 2.8808	- 2.5563		
AL 1.0248	AL 1.7213	AL 1.9687	AL 0.2665	AL 0.0029	AL 1.7555		
0.1059	0.5264	0.9305	1.847	1.007	0.5696		

02. Find the sequence that minimizes total elapsed time (in hours) required to complete the following jobs on two machines M_1 and M_2 in the order M_1M_2 . Also find the minimum elapsed time and idle time for two machines

Job	Α	В	С	D	Е	F
Μ1	5	9	4 8	7	8	6
M ₂	7	4	8	3	9	5

Step 1 : Finding the optimal sequence

Min time = 3 on job D on machine M_2 . Place the job at the end of the sequence

|--|

Next min time = 4 on job B on machine M₂ & on job C on machine M₁. Place the job B at the end of the sequence before D & job C at the start of the sequence sequence

Next min time = 4 on job A on machine M₁ & on job F on machine M₂. Place the job A at the start of the sequence after C & job F at the end of the sequence before B

СА	F	В	D
----	---	---	---

OPTIMAL SEQUENCE

Step 2 : Work table

According to the optimal sequence

Job	С	А	Е	F	В	D	tota	l process time
M ₁	4	5	8	6	9	7	=	39 hrs
M_2	8	7	9	5	4	3	=	36 hrs

		MACH			
	M	1	Idle time		
JOBS	IN	Ουτ	IN	Ουτ	on M ₂
с	0	4	4	12	4
A	4	9	12	19	
E	9	17	19	28	
F	17	23	28	33	
В	23	32	33	37	2
D	32	39	39	42	2

WORK TABLE

Step 3 :

Total elapsed time T = 42 hrsIdle time on $M_1 = T - \begin{pmatrix} \text{sum of processing time of all jobs on } M1 \end{pmatrix}$ = 42 - 39= 3 hrs

Idle time on $M_2 = T - ($ sum of processing time of all jobs on M2)= 42 - 36 = 6 hrs (CHECK : 4 + 2 = 6) 03. a pharmaceutical company has four branches , one each at city A , B , C & D . A branch manager is to be appointed one at each city , out of four candidates P ,Q , R and S . The monthly business depending upon the city and the effectiveness of the branch manager in that city is given below

			Bra	anch	Monthly	/ Busir	ness (in lacs)		
			Ma	nager	А	В	С	D		- 14
				Р	10	10	8	8		J
				Q	12	15	10	9		
				R	11	16	12	7		
				S	15	13	15	11		
6	6	8	8		substra	cting a	all the	elements	in the matrix from the largest	
4	1	6	7		value `1	.6′				
5	0	4	9		the mat	rx car	n now	be solved	for 'MINIMAL ASSIGNMNET PR	OB'
1	3	1	5							
0	0	2	2		reducin	q the	matrix	using `RC	W MINIMUM'	
3	0	5	6			5		5		
5	0	4	9							
0	2	0	4							
0	0	2	0		reducin	a tha	matrix	ucina \CC	LUMN MINIMUM'	
3	0	5	4		reducin	y the	matrix	using cc		
5	0	4	т 7							
0	2	0	2							
····)	×	2) ROW COLUMN METHOD'	
3	0	5	4		Allocati					
5	X	4	7		Drawing	g mini	mum n	o. of lines	to cover all zero's	
····¥			····· <u>/</u> ·····							
0	3	2	0		Revise	the ma	atrix -			
0	0	2	1		R	educe	all th	e UNCOVE	RED elements by its minimum `	'3 '
2	0	1	4		а	nd AD	D the	same at th	e INTERSECTION	
0	5	0	2							
X	3	2	0		Realloc	ation (using `	SINGLE ZI	RO ROW COLUMN METHOD'	
	X	2	1						assigned zero , the assignmer	nt
2		1	4		problen				_	
X	5	0	2							
					OPTIMA	L ASS	IGNME	ENT		

OPTIMAL ASSIGNMENT

P – D , Q – A , R – B , S – C , maximum business = 51 lacs